Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

11-Hydroxy-3,3-dimethyl-7,12-dioxo-3,4,6,6a,7,12,12a,12b-octahydrobenz[a]anthracen-1-yl acetate

Tomas Rozek,^a John H. Bowie,^a Brian W. Skelton^{b*} and Allan H. White^b

^aDepartment of Chemistry, University of Adelaide, South Australia 5005, Australia, and ^bDepartment of Chemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia Correspondence e-mail: bws@crystal.uwa.edu.au

Received 27 May 2003 Accepted 16 June 2003 Online 12 July 2003

The Diels–Alder reaction between 5-hydroxy-1,4-naphthoquinone and 5,5-dimethyl-3-vinyl-1,2-cyclohexadienyl acetate by *endo* addition gives the title compound, $C_{22}H_{22}O_5$, in 68% yield. This racemic diastereoisomer has the opposite regiochemistry to ochromycinone analogues produced previously and may allow access to a new type of anticancer-active saquayamycin analogue.

Comment

The results of the low-temperature single-crystal X-ray study of the title compound, (I), as presented in Figs. 1 and 2 and Table 1, are consistent with the given formulation, stoichiometry and stereochemistry. Although non-centrosymmetric, the individual crystals are racemic; the asymmetric unit of the structure consists of two independent molecules of similar geometry and conformation, with an interesting pseudosymmetry evident in their packing (Figs. 1 and 2).

The fused tetracyclic ring system (ring D) has been recorded previously with diverse combinations of hydroxy and keto moieties at the 7,12-sites, with phenol substituents at the 8- rather than the 11-position, and with a diversity of doublebond and/or epoxide functionalities variously associated with

rings A and B. A brominated adduct (Rozek et al., 2001) corresponding to the present combination of substituents has also been reported (see Kim et al., 1992; Rozek, Janowski et al., 1998; Rozek, Tiekink et al., 1998; Sasaki et al., 1998; Apponyi et al., 2002). In (I), the combination of ring fusions and functionalities results in a curved or 'dished' molecule, with dihedral angles between the planes about the Cn1=Cn2 and Cn5=Cn4a double bonds of 29.7 (1) and 27.7 (2) $^{\circ}$ (*n* = 1 or 2), the angles between these planes and those of the aromatic rings being 84.8 (2) and 85.8 (2)° for Cn1=Cn2, and 75.6 (1) and 76.6 (1)° for Cn5=Cn4a. The pendant C_2O_2 acetate planes are twisted to lie at dihedral angles of 115.4 (2) and 115.3 (2)° to the Cn1=Cn2 environment planes in molecules 1 and 2, respectively. Hydrogen-bonding details are given in Table 1. The pronounced asymmetry in the exocyclic angles at Cn11, suggestive of $O \cdots O$ repulsion, is more pronounced than at Cn12 (or Cn7).

Figure 2

Molecule 1 of (I) (molecule 2 is similar), showing the atomic numbering scheme (molecule numbers, n, have been omitted). H atoms are represented by circles of arbitrary radii (0.1 Å).

Experimental

A mixture of 5-hydroxy-1,4-naphthoquinone (317 mg) and 5,5-dimethyl-3-vinyl-1,2-cyclohexadienyl acetate (350 mg) in anhydrous toluene (60 ml) was heated under reflux for 60 h. The reaction mixture was allowed to cool to 293 K; the solvent was concentrated to 2 ml in vacuo, and the product was precipitated following dropwise addition of diethyl ether at 273 K. The product (550 mg) was purified by flash chromatography on silica, eluting with hexane/diethyl ether (2:1), and was crystallized from dichloromethane/diethyl ether (1:1), yielding the title compound (yield 450 mg, 68%) as colourless crystals (m.p. 461-463 K).

Crystal data

C22H22O5 $D_x = 1.298 \text{ Mg m}^{-3}$ $M_r = 366.41$ Mo $K\alpha$ radiation Monoclinic, Cc Cell parameters from 6110 a = 13.774 (2) Å reflections b = 11.233 (2) Å $\theta = 2.4 - 20.3^{\circ}$ $\mu=0.09~\mathrm{mm}^{-1}$ c = 24.595 (4) Å $\beta = 99.792 \ (2)^{\circ}$ T = 153 (2) K $V = 3750.0 (11) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.87, T_{\max} = 0.96$ 21 857 measured reflections

Refinement

Refinement on F R = 0.044wR = 0.046S = 1.114288 reflections 661 parameters

Fragment, colourless $0.32 \times 0.21 \times 0.17 \text{ mm}$ 4771 independent reflections

i i i independent reneettono
4288 reflections with $F > 2\sigma(F)$
$R_{\rm int} = 0.044$
$\theta_{\rm max} = 29^{\circ}$
$h = -18 \rightarrow 18$
$k = -15 \rightarrow 15$
$l = -32 \rightarrow 32$

All H-atom parameters refined $w = 1/(\sigma^2 F + 0.0005 F^2)$ $(\Delta/\sigma)_{\rm max}=0.016$ $\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O111-H111O112	0.88 (6)	1.83 (5)	2.618 (4)	148 (4)
O211-H211O212	0.92 (4)	1.77 (4)	2.586 (4)	147 (3)

H atoms were located from difference Fourier maps and refined without constraints, giving C-H distances in the range 0.90 (5)-1.08 (5) Å and O-H distances of 0.88 (6) and 0.92 (4) Å.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: Xtal3.5; program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1412). Services for accessing these data are described at the back of the journal.

References

Apponyi, M. A., Bowie, J. H., Skelton, B. W. & White, A. H. (2002). Aust. J. Chem. 55, 343-348.

Hall, S. R., King, G. S. D. & Stewart, J. M. (1995). Xtal3.5 User's Manual. University of Western Australia, Perth: Lamb.

Kim, K., Reibenspies, J. & Sulikowski, G. (1992). J. Org. Chem. 57, 5557-5559.

Rozek, T., Bowie, J. H., Pyke, S. M., Skelton, B. W. & White, A. H. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1826-1830.

Rozek, T., Janowski, W., Hevko, J. M., Tiekink, E. R. T., Dua, S., Stone, D. J. M. & Bowie, J. H. (1998). Aust. J. Chem. 51, 515-523.

Rozek, T., Tiekink, E. R. T., Taylor, D. K. & Bowie, J. H. (1998). Aust. J. Chem. 51, 1057-1060.

Sasaki, T., Gomi, S., Sezaki, M., Takeuchi, Y., Kodama, Y. & Kawamura, K. (1998). J. Antibiot. 41, 843-800.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.