Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

11-Hydroxy-3,3-dimethyl-7,12-dioxo-3,4,6,6a,7,12,12a,12b-octahydro-benz[a]anthracen-1-yl acetate

Tomas Rozek, ${ }^{\text {a }}$ John H. Bowie, ${ }^{\text {a }}$ Brian W. Skelton ${ }^{\text {b* }}$ and Allan H. White ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Adelaide, South Australia 5005, Australia, and ${ }^{\text {b }}$ Department of Chemistry, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
Correspondence e-mail: bws@crystal.uwa.edu.au

Received 27 May 2003
Accepted 16 June 2003
Online 12 July 2003
The Diels-Alder reaction between 5-hydroxy-1,4-naphthoquinone and 5,5-dimethyl-3-vinyl-1,2-cyclohexadienyl acetate by endo addition gives the title compound, $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{5}$, in 68% yield. This racemic diastereoisomer has the opposite regiochemistry to ochromycinone analogues produced previously and may allow access to a new type of anticancer-active saquayamycin analogue.

Comment

The results of the low-temperature single-crystal X-ray study of the title compound, (I), as presented in Figs. 1 and 2 and Table 1, are consistent with the given formulation, stoichiometry and stereochemistry. Although non-centrosymmetric, the individual crystals are racemic; the asymmetric unit of the structure consists of two independent molecules of similar geometry and conformation, with an interesting pseudosymmetry evident in their packing (Figs. 1 and 2).

(I)

The fused tetracyclic ring system (ring D) has been recorded previously with diverse combinations of hydroxy and keto moieties at the 7,12 -sites, with phenol substituents at the 8 - rather than the 11-position, and with a diversity of doublebond and/or epoxide functionalities variously associated with

Figure 1
The unit cell of (I), projected along b. Displacement ellipsoids for non-H atoms are shown at the 50% probability level.
rings A and B. A brominated adduct (Rozek et al., 2001) corresponding to the present combination of substituents has also been reported (see Kim et al., 1992; Rozek, Janowski et al., 1998; Rozek, Tiekink et al., 1998; Sasaki et al., 1998; Apponyi et al., 2002). In (I), the combination of ring fusions and functionalities results in a curved or 'dished' molecule, with dihedral angles between the planes about the $\mathrm{C} n 1=\mathrm{C} n 2$ and $\mathrm{C} n 5=\mathrm{C} n 4$ a double bonds of 29.7 (1) and 27.7 (2) ${ }^{\circ}(n=1$ or 2$)$, the angles between these planes and those of the aromatic rings being 84.8 (2) and 85.8 (2) ${ }^{\circ}$ for $\mathrm{C} n 1=\mathrm{Cn} 2$, and 75.6 (1) and $76.6(1)^{\circ}$ for $\mathrm{C} n 5=\mathrm{C} n 4 \mathrm{a}$. The pendant $\mathrm{C}_{2} \mathrm{O}_{2}$ acetate planes are twisted to lie at dihedral angles of 115.4 (2) and 115.3 (2) ${ }^{\circ}$ to the $\mathrm{C} n 1=\mathrm{C} n 2$ environment planes in molecules 1 and 2, respectively. Hydrogen-bonding details are given in Table 1. The pronounced asymmetry in the exocyclic angles at Cn11, suggestive of $\mathrm{O} \cdots \mathrm{O}$ repulsion, is more pronounced than at $\mathrm{C} n 12$ (or $\mathrm{C} n 7$).

Figure 2
Molecule 1 of (I) (molecule 2 is similar), showing the atomic numbering scheme (molecule numbers, n, have been omitted). H atoms are represented by circles of arbitrary radii $(0.1 \AA)$.

Experimental

A mixture of 5 -hydroxy-1,4-naphthoquinone (317 mg) and 5,5 -di-methyl-3-vinyl-1,2-cyclohexadienyl acetate (350 mg) in anhydrous toluene (60 ml) was heated under reflux for 60 h . The reaction mixture was allowed to cool to 293 K ; the solvent was concentrated to 2 ml in vacuo, and the product was precipitated following dropwise addition of diethyl ether at 273 K . The product (550 mg) was purified by flash chromatography on silica, eluting with hexane/diethyl ether (2:1), and was crystallized from dichloromethane/diethyl ether (1:1), yielding the title compound (yield $450 \mathrm{mg}, 68 \%$) as colourless crystals (m.p. 461-463 K).

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{5}$
$M_{r}=366.41$
Monoclinic, Cc
$a=13.774$ (2) A
$b=11.233$ (2) \AA
$c=24.595(4) \AA$
$\beta=99.792(2)^{\circ}$
$V=3750.0(11) \AA^{3}$
$Z=8$

Data collection

Bruker SMART CCD

 diffractometerω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.87, T_{\text {max }}=0.96$
21857 measured reflections

Refinement

Refinement on F
$R=0.044$
$w R=0.046$
$S=1.11$
4288 reflections
661 parameters

Table 1
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O111-H111 $\cdots \mathrm{O} 112$	$0.88(6)$	$1.83(5)$	$2.618(4)$	$148(4)$
O211-H211 $\cdots \mathrm{O} 212$	$0.92(4)$	$1.77(4)$	$2.586(4)$	$147(3)$

H atoms were located from difference Fourier maps and refined without constraints, giving $\mathrm{C}-\mathrm{H}$ distances in the range 0.90 (5)1.08 (5) \AA and $\mathrm{O}-\mathrm{H}$ distances of 0.88 (6) and 0.92 (4) \AA.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: Xtal3.5; program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1412). Services for accessing these data are described at the back of the journal.

References

Apponyi, M. A., Bowie, J. H., Skelton, B. W. \& White, A. H. (2002). Aust. J. Chem. 55, 343-348.
Hall, S. R., King, G. S. D. \& Stewart, J. M. (1995). Xtal3.5 User's Manual. University of Western Australia, Perth: Lamb.
Kim, K., Reibenspies, J. \& Sulikowski, G. (1992). J. Org. Chem. 57, 5557-5559.
Rozek, T., Bowie, J. H., Pyke, S. M., Skelton, B. W. \& White, A. H. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1826-1830.
Rozek, T., Janowski, W., Hevko, J. M., Tiekink, E. R. T., Dua, S., Stone, D. J. M. \& Bowie, J. H. (1998). Aust. J. Chem. 51, 515-523.
Rozek, T., Tiekink, E. R. T., Taylor, D. K. \& Bowie, J. H. (1998). Aust. J. Chem. 51, 1057-1060.
Sasaki, T., Gomi, S., Sezaki, M., Takeuchi, Y., Kodama, Y. \& Kawamura, K. (1998). J. Antibiot. 41, 843-800.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

